The Saccharomyces cerevisiae poly(A) binding protein Pab1 as a target for eliciting stress tolerant phenotypes
نویسندگان
چکیده
When exploited as cell factories, Saccharomyces cerevisiae cells are exposed to harsh environmental stresses impairing titer, yield and productivity of the fermentative processes. The development of robust strains therefore represents a pivotal challenge for the implementation of cost-effective bioprocesses. Altering master regulators of general cellular rewiring represents a possible strategy to evoke shaded potential that may accomplish the desirable features. The poly(A) binding protein Pab1, as stress granules component, was here selected as the target for obtaining widespread alterations in mRNA metabolism, resulting in stress tolerant phenotypes. Firstly, we demonstrated that the modulation of Pab1 levels improves robustness against different stressors. Secondly, the mutagenesis of PAB1 and the application of a specific screening protocol on acetic acid enriched medium allowed the isolation of the further ameliorated mutant pab1 A60-9. These findings pave the way for a novel approach to unlock industrially promising phenotypes through the modulation of a post-transcriptional regulatory element.
منابع مشابه
Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA
Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...
متن کاملDeep mutational scanning of an RRM domain of the Saccharomyces cerevisiae poly(A)-binding protein.
The RNA recognition motif (RRM) is the most common RNA-binding domain in eukaryotes. Differences in RRM sequences dictate, in part, both RNA and protein-binding specificities and affinities. We used a deep mutational scanning approach to study the sequence-function relationship of the RRM2 domain of the Saccharomyces cerevisiae poly(A)-binding protein (Pab1). By scoring the activity of more tha...
متن کاملPbp1p, a factor interacting with Saccharomyces cerevisiae poly(A)-binding protein, regulates polyadenylation.
The poly(A) tail of an mRNA is believed to influence the initiation of translation, and the rate at which the poly(A) tail is removed is thought to determine how fast an mRNA is degraded. One key factor associated with this 3'-end structure is the poly(A)-binding protein (Pab1p) encoded by the PAB1 gene in Saccharomyces cerevisiae. In an effort to learn more about the functional role of this pr...
متن کاملKervestin – Supplementary information 1 Interaction between the poly(A)-binding protein Pab1 and the eukaryotic release factor eRF3 regulates translation termination but not mRNA decay in Saccharomyces cerevisiae
متن کامل
Yeast Pab1 interacts with Rna15 and participates in the control of the poly(A) tail length in vitro.
In Saccharomyces cerevisiae, the single poly(A) binding protein, Pab1, is the major ribonucleoprotein associated with the poly(A) tails of mRNAs in both the nucleus and the cytoplasm. We found that Pab1 interacts with Rna15 in two-hybrid assays and in coimmunoprecipitation experiments. Overexpression of PAB1 partially but specifically suppressed the rna15-2 mutation in vivo. RNA15 codes for a c...
متن کامل